

Lattice Design

C. C. Kuo 郭錦城 July 29 ~ August 7, 2010 Beijing

Some of the materials, figures, etc., are from references:

- S.Y. Lee, Accelerator Physics, World Scientific, 2nd edition, 2004.
- Helmut Wiedemann, Particle Accelerator Physics, Springer, 3rd edition, 2007.
- 3. Klause Wille, The Physics of Particle Accelerators, Oxford University Press, 2000
- 4. A. W. Chao and Maury Tigner, Handbook of Accelerator Physics and Engineering, World Scientific, 3rd edition, 1999.
- 5. And other resources, public web pages, etc.

These lecture notes are only for this School.

outline

- Introduction
- Linear beam dynamics
- Linear lattice
- Nonlinear beam dynamics
- Examples
- Imperfections, corrections and lifetime

Accelerator Lattice Design

- The arrangement of the magnets along beam path for guiding or focusing charged particles is called the magnet lattice or lattice. The arrangement can be irregular array or repetitive regular array of magnets.
- The repetitive regular array is called periodic lattice.
- In a circular accelerator, the periodic lattice can be symmetric. Usually, the lattice is constructed from cells and then superperiods. A number of superperiods then complete a ring.
- The goal of lattice design is to obtain simple, reliable, flexible, and high performance accelerators that meet users' request.
- For modern circular accelerators, lattice design is of crucial importance in the design of the accelerators.

NSRRC TLS

Synchrotron Light Source

Beam Brilliance of Light Source

$$B = \frac{dN/dt}{4\pi\sigma_x \sigma_x \sigma_y \sigma_y} \frac{\Delta\omega}{\omega} \propto \frac{I}{\kappa \varepsilon_x^2}$$

[photon/sec/mm²/mrad²/0.1%bandwidth]

Luminosity in Collider

$$L = \frac{N_+ N_-}{4\pi\sigma_x \sigma_z} f_{collision} = \frac{N_+ N_-}{4\pi\sigma_x \sigma_z} f_0 n_b$$

Due to Coulomb force of opposite beam,

beam - beam tune - shift due to quadrupole - like force :

$$\xi_{z\pm} = \frac{N_{\pm}r_{0}\beta_{z}^{*}}{2\pi\gamma\sigma_{z}(\sigma_{x}+\sigma_{z})}, \xi_{x\pm} = \frac{N_{\pm}r_{0}\beta_{x}^{*}}{2\pi\gamma\sigma_{x}(\sigma_{x}+\sigma_{z})}$$

 β_x^*, β_z^* are betatron function at interaction point (IP) for $\sigma_x >> \sigma_z, \ \xi_z \approx 0.05 \sim 0.1$ $N_+ = N_ L \approx \frac{\pi \gamma^2}{r_0^2} \frac{\sigma_x \sigma_z}{\beta_x^{*2}} \xi_z^2 f_{collision}$

Optimization of luminosity, emittance can not be too small. The design of e⁺e⁻ colliders differ substantially from synchrotron light sources,

- 1) For a modern accelerator, lattice design work usually takes some years to finalize the design parameters. It is an iterative process, involving users, funding, accelerator physics, accelerator subsystems, civil engineering, etc.
- 2) It starts from major parameters such as energy, size, etc.
- 3) Then linear lattice is constructed based on the building blocks. Linear lattice should fulfill accelerator physics criteria and provide global quantities such as circumference, emittance, betatron tunes, magnet strengths, and some other machine parameters.

- 4) Design codes such as MAD are used for the lattice functions matching and parameters calculations.
- 5) Usually, a design with periodic cells is needed in a circular machine. The cell can be FODO, Double Bend Achromat (DBA), Triple Bend Achromat (TBA), Quadruple Bend Achromat (QBA), or Multi-Bend Achromat (MBA or nBA) types.
- Combined-function or separated-function magnets are selected.
- Maximum magnetic field strengths are constrained. (room- temperature or superconducting magnets, bore radius or chamber profile, etc.)
- ③ Matching or insertion sections are matched to get desired machine functions.

- 6) To get stable solution of the off-momentum particle, we need to put sextupole magnets and RF cavities in the lattice beam line. Such nonlinear elements induce nonlinear beam dynamics and the dynamic acceptances in the transverse and longitudinal planes need to be carefully studied in order to get sufficient acceptances. (for long beam current lifetime and high injection efficiency)
- 7) For the modern high performance machines, strong sextupole fields to correct high chromaticity will have large impact on the nonlinear beam dynamics and it is the most challenging and laborious work at this stage.

- 8) In the real machine, there are always imperfections in the accelerator elements. So, one need to consider engineering/alignment limitation or errors, vibrations, etc. Correction schemes such as orbit correction, coupling correction, etc., need to be developed. (dipole correctors, skew quadrupoles, beam position monitors, etc)
- 9) Make sure long enough beam current lifetime, e.g., Touschek lifeime, in the real machine including insertion devices, etc.
- 10) To achieve a successful accelerator, we need to consider not only lattice design but many issues, which might be covered in this school.

Lattice Design Process

- 1) User requirements
- 2) Lattice type (DBA, TBA, QBA, nBA... FODO)
- 3) Linear lattice
- 4) Nonlinear dynamic aperture tracking
- 5) Longitudinal dynamics
- 6) Error tolerance analysis
- 7) Satisfying user requirements (if NO, go back to step 2)
- 8) ID effects, lifetime, COD, coupling, orbit stability, instabilities, injection, etc.

dipole

(Beam Acceleration)

Insertion devices

<image>

Equation of motion

Equation of motion

Betatron equation of motion :

$$\begin{aligned} \left\{ x^{*} - \frac{\rho + x}{\rho^{2}} &= \pm \frac{B_{z}}{B\rho} \frac{p_{0}}{p} (1 + \frac{x}{\rho})^{2} \\ z^{*} &= \mp \frac{B_{x}}{B\rho} (1 + \frac{x}{\rho})^{2} \\ b_{n}^{*} &= \frac{1}{B_{0}n!} \frac{\partial^{n}B_{z}}{\partial x^{n}} |_{x=z=0}, a_{n}^{*} &= \frac{1}{B_{0}n!} \frac{\partial^{n}B_{x}}{\partial x^{n}} |_{x=z=0} \\ b_{0}^{*} &: \text{normal dipole} \quad B_{z}^{*} &= B_{0}b_{0} \\ a_{0}^{*} &: \text{skew dipole} \quad B_{x}^{*} &= B_{0}a_{0} \\ b_{1}^{*} &: \text{normal quad} \quad B_{z}^{*} &= B_{0}b_{1}x, B_{x}^{*} &= B_{0}b_{1}z \\ b_{1}^{*} &: \text{skew quad} \quad B_{z}^{*} &= -B_{0}a_{1}z, B_{x}^{*} &= B_{0}b_{2}xz \\ b_{2}^{*} &: \text{skew sext} \quad B_{z}^{*} &= -2B_{0}a_{1}xz, B_{x}^{*} &= B_{0}a_{2}(x^{2} - z^{2}) \\ \end{array} \right. \end{aligned}$$
Hill's equation:
$$\begin{cases} x^{*} + K_{x}(s)x = \frac{\Delta B_{z}}{B\rho} \\ z^{*} + K_{z}(s)z = -\frac{\Delta B_{z}}{B\rho} \\ z^{*} + K_{z}(s)z = -\frac{\Delta B_{z}}{B\rho} \\ z^{*} + K_{z}(s) = \frac{1}{\rho^{2}} - \frac{1}{B\rho} \frac{\partial B_{z}}{\partial x}, K_{z}(s) = \frac{1}{B\rho} \frac{\partial B_{z}}{\partial z}, \end{cases}$$

Main magnets

Sext poletip < 0.4T

Focusing

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2} > 0$$

By properly arrange focusing and defocusing quadrupole magnets, the overall effects are focusing in both radial (horizontal) and vertical planes.

Combined function lattice: quadrupole field and/or sextupole fields in bending magnet.

Separated function lattice: no quadrupole or sextupole fields in bending magnet.

Ideal accelerator (linear motion):

$$x'' + K_x(s)x = 0, \quad z'' + K_z(s)z = 0, \quad K_x(s) = \frac{1}{\rho^2} - \frac{1}{B\rho}\frac{\partial B_z}{\partial x}, \quad K_z(s) = +\frac{1}{B\rho}\frac{\partial B_x}{\partial z},$$

Matrix formalism in linear beam dynamics:

$$\begin{pmatrix} y(s) \\ y'(s) \end{pmatrix} = M(s, s_0) \begin{pmatrix} y(s_0) \\ y'(s_0) \end{pmatrix}$$
(1) Focusing quadrupole $M(s, s_0) = \begin{pmatrix} \cos \sqrt{K}\ell & \frac{1}{\sqrt{K}} \sin \sqrt{K}\ell \\ -\sqrt{K} \sin \sqrt{K}\ell & \cos \sqrt{K}\ell \end{pmatrix}, K > 0, \ \ell = s - s_0$

$$= \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix}, \text{ for thin - lens approximation, } \ell \to 0, f(\text{focal length}) = \lim_{\ell \to 0} \frac{1}{|K||\ell}$$
(2) Defocusing quadrupole $M(s, s_0) = \begin{pmatrix} \cosh \sqrt{|K|}\ell & \frac{1}{\sqrt{|K|}} \sin \sqrt{|K|}\ell \\ \sqrt{|K|} \sinh \sqrt{|K|}\ell & \cosh \sqrt{|K|}\ell \end{pmatrix}, K < 0, \ \ell = s - s_0$

$$= \begin{pmatrix} 1 & 0 \\ \sqrt{|K|} \sinh \sqrt{|K|}\ell & \cosh \sqrt{|K|}\ell \\ 1/f & 1 \end{pmatrix}, \text{ for thin - lens approximation}$$
(3) Drift space K=0 $M(s, s_0) = \begin{pmatrix} 1 & \ell \\ 0 & 1 \end{pmatrix}, \ \ell = s - s_0$

(4) pure sector dipole:
$$K_x = \frac{1}{\rho^2}$$
, $M_x(s,s_0) = \begin{pmatrix} \cos\theta & \rho\sin\theta \\ -\frac{1}{\rho}\sin\theta & \cos\theta \end{pmatrix}$, $\theta = \ell/\rho$
 $M_x(s,s_0) = \begin{pmatrix} 1 & \ell \\ 0 & 1 \end{pmatrix}$ for small $\theta = \ell/\rho$ non-deflecting plane: $M_z(s,s_0) = \begin{pmatrix} 1 & \ell \\ 0 & 1 \end{pmatrix}$
(5) pure rectangular dipole due to wedge in both ends:
In deflecting plane: $M_x(s,s_0) = \begin{pmatrix} 1 & 0 \\ 1/f_x & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & \rho\sin\theta \\ -\frac{1}{\rho}\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1/f_x & 1 \end{pmatrix}$
 $M_x(s,s_0) = \begin{pmatrix} 1 & \rho\sin\theta \\ 0 & 1 \end{pmatrix}$ where $\frac{1}{f_x} = \frac{1}{\rho}\tan(\frac{\theta}{2})$
In non-deflecting plane: $M_z(s,s_0) = \begin{pmatrix} 1 & 0 \\ -1/f_z & 1 \end{pmatrix} \begin{pmatrix} 1 & \ell \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ -1/f_z & 1 \end{pmatrix}$,
where $\frac{1}{f_z} = \frac{1}{\rho}(1 - \frac{2G}{3L})\tan(\frac{\theta}{2})$
G = half pole gap, L = straight magnet length

Beam dynamics in transport line

• In open transport lines the phase space can be transferred using transfer matrix piecewise. We need initial condition.

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{sn} = M(s_n, s_{n-1}) \dots M(s_3, s_2) M(s_2, s_1) \begin{pmatrix} x \\ x' \end{pmatrix}_{s1}$$

 In terms of Courant-Snyder parameters, there are relations between initial and final points along the beam path.

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s^2} = M(s_2, s_1) \begin{pmatrix} x \\ x' \end{pmatrix}_{s^1} \qquad M(s_2, s_1) = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}}(\cos\psi + \alpha_1 \sin\psi) & \sqrt{\beta_1\beta_2} \sin\psi \\ -\frac{1 + \alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}}\sin\psi + \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1\beta_2}}\cos\psi & \sqrt{\frac{\beta_1}{\beta_2}}(\cos\psi - \alpha_2 \sin\psi) \end{pmatrix}$$

Beam Dynamics in Periodic Lattice

Hill's equation :

$$y'' + K(s)y = 0, K(s+L) = K(s)$$

Floquet's theorm for the solution of Hill's equation :

(1) Two independent solutions

$$y_1(s) = w(s)e^{i\mu(s/L)}, y_2(s) = w^*(s)e^{-i\mu(s/L)},$$

 $w^*(s)$: complex conjugate to w(s)

and
$$w(s+L) = w(s)$$

(2)
$$\cos \mu = \frac{1}{2} \operatorname{Tr}(M)$$

(3)
$$\det M = 1$$

 $(4) -2 \le \operatorname{Tr}(M) \le 2$

Courant – Snyder Parameters for periodic lattice

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$$
$$= \begin{pmatrix} \cos \Phi + \alpha \sin \Phi & \beta \sin \Phi \\ -\gamma \sin \Phi & \cos \Phi - \alpha \sin \Phi \end{pmatrix} = I \cos \Phi + J \sin \Phi$$
$$J = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}, \text{Trace}(J) = 0, J^2 = -I \Rightarrow \beta \gamma = 1 + \alpha^2$$
eigenvalues $\lambda = e^{\pm i\Phi} = \cos \Phi \pm i \sin \Phi$
$$\Phi = \cos^{-1}[(M_{11} + M_{22})/2]$$
$$\beta = M_{12} / \sin \Phi$$
$$\alpha = (M_{11} - M_{22}) / 2 \sin \Phi$$

where tranfer matrix is for one period or one turn.

Using similarity transformation $M(s_2) = M(s_2, s_1)M(s_1)M(s_2, s_1)^{-1}$ for any two points in the beam line

We have

$$\begin{pmatrix} \boldsymbol{\beta}_{2} \\ \boldsymbol{\alpha}_{2} \\ \boldsymbol{\gamma}_{2} \end{pmatrix} = \begin{pmatrix} \boldsymbol{M}_{11}^{2} & -2\boldsymbol{M}_{11}\boldsymbol{M}_{22} & \boldsymbol{M}_{12}^{2} \\ -\boldsymbol{M}_{11}\boldsymbol{M}_{21} & \boldsymbol{M}_{11}\boldsymbol{M}_{22} + \boldsymbol{M}_{12}\boldsymbol{M}_{21} & -\boldsymbol{M}_{12}\boldsymbol{M}_{22} \\ \boldsymbol{M}_{21}^{2} & -2\boldsymbol{M}_{21}\boldsymbol{M}_{22} & \boldsymbol{M}_{22}^{2} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\beta}_{1} \\ \boldsymbol{\alpha}_{1} \\ \boldsymbol{\gamma}_{1} \end{pmatrix}$$

Using Froquet transformation We get $y(s) = a\sqrt{\beta}e^{\pm i\psi}, \psi(s-s_0) = \int_{s_0}^s \frac{d\varsigma}{\beta(\varsigma)}, \Phi = \int_0^L \frac{ds}{\beta(s)}$ And $M(s_{2}, s_{1}) = \begin{pmatrix} \sqrt{\frac{\beta_{2}}{\beta_{1}}}(\cos\psi + \alpha_{1}\sin\psi) & \sqrt{\beta_{1}\beta_{2}}\sin\psi \\ -\frac{1 + \alpha_{1}\alpha_{2}}{\sqrt{\beta_{1}\beta_{2}}}\sin\psi + \frac{\alpha_{1} - \alpha_{2}}{\sqrt{\beta_{1}\beta_{2}}}\cos\psi & \sqrt{\frac{\beta_{1}}{\beta_{2}}}(\cos\psi - \alpha_{2}\sin\psi) \end{pmatrix}$ $\begin{bmatrix} \sqrt{\beta_2} & 0 \\ -\frac{\alpha_2}{\sqrt{\beta_2}} & \frac{1}{\sqrt{\beta_2}} \end{bmatrix} \begin{pmatrix} \cos\psi & \sin\psi \\ -\sin\psi & \cos\psi \end{pmatrix} \begin{pmatrix} \sqrt{\beta_1} & 0 \\ -\frac{\alpha_1}{\sqrt{\beta_1}} & \frac{1}{\sqrt{\beta_1}} \end{pmatrix}$

Stability of FODO Cell and Optimum Phase Advance Per Cell

FODO cell :
$$\frac{1}{2}QF - L - QD - L - \frac{1}{2}QF$$
, $f = 1/k\ell$, ℓ = half quad length

$$M_{FODO} = \begin{pmatrix} 1 - 2\frac{L^2}{f^2} & 2L(1 + \frac{L}{f}) \\ -1/f^* & 1 - 2\frac{L^2}{f^2} \end{pmatrix} \text{ with } f_f = f_d = f, \ 1/f^* = 2(1 - L/f)(L/f^2)$$
We can get :

$$\beta_x (\text{middle of } QF) = \beta_x^* = L\frac{\kappa(\kappa+1)}{\sqrt{\kappa^2 - 1}} \text{ with } \kappa = f/L \Rightarrow \kappa > 1 \rightarrow f > L$$

$$\beta_x (\text{middle of } QD) = \beta_x^- = L\frac{\kappa(\kappa-1)}{\sqrt{\kappa^2 - 1}}$$
Maximum betatron function can be minimized
with optimum phase advance per FODO cell :

$$\frac{d\beta_x^*}{d\kappa} = 0 \Rightarrow \phi_0 = 76.345^\circ$$
Exercise 1

$$\begin{aligned} & \text{FODO cell} : \frac{1}{2}QF - L - QD - L - \frac{1}{2}QF, f = 1/k\ell, \ell = \text{half quad length} \\ & \text{and } \frac{1}{2}QD - L - QF - L - \frac{1}{2}QD \\ & M_{FODO} = \begin{pmatrix} 1 & 0 \\ \mp 1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \pm 2/f & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \mp 1/f & 1 \end{pmatrix} \\ & M_{FODO} = \begin{pmatrix} 1 - 2\frac{L^2}{f^2} & 2L(1 \pm \frac{L}{f}) \\ -1/f^* & 1 - 2\frac{L^2}{f^2} \end{pmatrix} \text{ with } f_f = f_d = f, 1/f^* = 2(1 \mp L/f)(L/f^2) \\ & = \begin{pmatrix} \cos \Phi + \alpha \sin \Phi & \beta \sin \Phi \\ -\gamma \sin \Phi & \cos \Phi + \alpha \sin \Phi \end{pmatrix} \\ & \Rightarrow \cos \Phi = 1 - 2\frac{L^2}{f}, \ \sin \frac{\Phi}{2} = \frac{L}{f}, \beta^{\pm} = 2L\frac{(1 \pm \sin \frac{\Phi}{2})}{\sin \Phi}, \alpha = 0 \end{aligned}$$

L1:DRIFT,L=1 L2:DRIFT,L=1 QFH :QUADRUPOLE,L=.5/2, K1=0.5 QDH :QUADRUPOLE,L=.5/2, K1=-0.5 BD :SBEND,L=3,ANGLE=TWOPI/96 HSUP :LINE=(QFH,L1,BD,L2,QDH) FSUP :LINE=(HSUP,-HSUP) FODO :LINE=(2*FSUP) RING :LINE=(48*FSUP,)

β (m)

Betatron Tune $v_{x,z} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,z}(s)}$ General solution: $y(s) = a\sqrt{\beta} \cos(\psi + \psi_0)$ Normalized coordinate $w = \frac{y}{\sqrt{\beta}}, \phi = \frac{1}{v} \int \frac{d\varsigma}{\beta(\varsigma)} = \frac{\psi}{v}$ $w(\phi) = a\cos v(\phi + \phi_0)$ $\left|\frac{d^2w}{d\phi^2} + v^2w = 0\right|$ \Rightarrow a simple harmonic oscillation in normalized coordinate. Courant – Snyder Invariant and Emittance $C(y, y') = \frac{1}{\beta} (y^2 + (\alpha y + \beta y')^2) = \gamma y^2 + 2\alpha y y' + \beta y'^2 = \varepsilon = \text{emittance} = 2J = a^2$ Beam size : $\sigma(s) = \sqrt{\varepsilon\beta(s) + (D(s)\sigma_{\delta})^2}$ Beam divergence : $\sigma'(s) = \sqrt{\varepsilon \gamma(s) + (D'(s)\sigma_s)^2}$

FIG. 12--(a) Betatron function. (b) Cosine-like trajectory for s=0.
 (c) Sine-like trajectory for s=0. (d) One trajectory on several successive revolutions.

M. Sands SLAC-121

Off-momentum orbit

$$x'' + \left(\frac{1-\delta}{\rho^2(1+\delta)} - \frac{k_x(s)}{1+\delta}\right)x = \frac{\delta}{\rho(1+\delta)}, k_x(s) = \frac{1}{B\rho}\frac{\partial B_z}{\partial x}$$

Let $x = x_{\beta}(s) + D(s)\delta$
then $x_{\beta}'' + (K_x(s) + \Delta K_x)x_{\beta} = 0$
 $D'' + (K_x(s) + \Delta K_x)D = \frac{1}{\rho} + o(\delta)$
where $K_x(s) = \frac{1}{\rho^2} - k_x(s), \Delta K_x = \left[-\frac{2}{\rho^2} + k_x(s)\right]\delta + o(\delta^2)$
To the lowest order in $\delta \Longrightarrow D'' + K_x(s)D = \frac{1}{\rho}$

$$D(s+L) = D(s), D'(s+L) = D'(s)$$

$$\binom{D(s)}{D'(s)} = M(s, s_0) \binom{D(s_0)}{D'(s_0)} + \binom{d}{d'} \quad 2 \times 2 \text{ matrix}$$

$$\binom{d}{d'} = \binom{\frac{1}{\rho K_x} (1 - \cos \sqrt{K_x} s)}{\frac{1}{\rho \sqrt{K_x}} \sin \sqrt{K_x} s} \quad \text{if } K_x > 0,$$

$$\binom{d}{d'} = \binom{\frac{1}{\rho |K_x|} (-1 + \cosh \sqrt{|K_x|} s)}{\frac{1}{\rho \sqrt{|K_x|}} \sinh \sqrt{|K_x|} s} \quad \text{if } K_x < 0$$

$$\begin{pmatrix} D(s) \\ D'(s) \\ 1 \end{pmatrix} = M \begin{pmatrix} D(s_0) \\ D'(s_0) \\ 1 \end{pmatrix} \quad 3 \times 3 \text{ matrix}$$

For pure sector dipole :
$$M = \begin{pmatrix} \cos\theta & \rho\sin\theta & \rho(1 - \cos\theta) \\ -(1/\rho)\sin\theta & \cos\theta & \sin\theta \\ 0 & 0 & 1 \end{pmatrix}$$
$$M \stackrel{\theta \to 0}{=} \begin{pmatrix} 1 & \ell & \ell\theta/2 \\ 0 & 1 & \theta \\ 0 & 0 & 1 \end{pmatrix}$$
For pure rectangular dipole :
$$M = \begin{pmatrix} 1 & \rho\sin\theta & \rho(1 - \cos\theta) \\ 0 & 1 & 2\tan\frac{\theta}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

For pure quadrupole:

$$M = \begin{pmatrix} \cos \sqrt{K}\ell & \frac{1}{\sqrt{K}} \sin \sqrt{K}\ell & 0 \\ -\sqrt{K} \sin \sqrt{K}\ell & \cos \sqrt{K}\ell & 0 \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 \\ -1/f & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} \cosh \sqrt{|K|}\ell & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}\ell & 0 \\ \sqrt{|K|} \sinh \sqrt{|K|}\ell & \cosh \sqrt{|K|}\ell & 0 \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 \\ 1/f & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Dispersion for periodic lattice

• For periodic lattice, the closed-orbit condition:

$$\begin{pmatrix} \mathbf{D} \\ \mathbf{D}' \\ 1 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{D} \\ \mathbf{D}' \\ 1 \end{pmatrix}$$
$$D = \frac{M_{13}(1 - M_{22}) + M_{12}M_{23}}{2 - M_{11} - M_{22}}$$
$$D' = \frac{M_{13}M_{21} + (1 - M_{11})M_{23}}{2 - M_{11} - M_{22}}$$
Solving M_{13}, M_{23}
$$M = \begin{pmatrix} \cos \Phi + \alpha \sin \Phi & \beta \sin \Phi & (1 - \cos \Phi - \alpha \sin \Phi)D - \beta \sin \Phi D' \\ -\gamma \sin \Phi & \cos \Phi - \alpha \sin \Phi & \gamma \sin \Phi D + (1 - \cos \Phi + \alpha \sin \Phi)D' \\ 0 & 0 & 1 \end{pmatrix}$$

Dispersion in a FODO Cell

For one half FODO cell, 1/2 QF - B - 1/2 QD :

$$\begin{split} M_{_{1/2FODO}} = & \begin{pmatrix} 1 & 0 & 0 \\ 1/f & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L & L^2/(2\rho) \\ 0 & 1 & L/\rho \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1/f & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ = & \begin{pmatrix} 1-L/f & L & L^2/(2\rho) \\ -L/f^2 & 1+L/f & (L/\rho)(1+L/2f) \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

Transformation through one half FODO cell :

 $\begin{pmatrix} \mathbf{D}^{-} \\ \mathbf{0} \\ 1 \end{pmatrix} = \boldsymbol{M}_{1/2FODO} \begin{pmatrix} \mathbf{D}^{+} \\ \mathbf{0} \\ 1 \end{pmatrix}$

with D' = 0 in the middle of quads, we get

$$D^{+} = \frac{f^{2}}{\rho} (1 + \frac{L}{2f})$$
$$D^{-} = \frac{f^{2}}{\rho} (1 - \frac{L}{2f})$$

FODO Cell

For full FODO, f is the focal length of quadrupole, L is the half cell length, Φ is the phase advance of the FODO cell.

$$\sin \frac{\Phi}{2} = \frac{L}{2f}, \beta_{F,D} = \frac{2L(1 \pm \sin(\Phi/2))}{\sin \Phi}, \alpha_{F,D} = 0$$
$$\binom{D}{D'}_{1} = M_{FODO} \binom{D}{D'}_{1}$$
$$D_{F} = \frac{L\theta(1 + \frac{1}{2}\sin(\Phi/2))}{\sin^{2}(\Phi/2)}, D_{F}' = 0$$
$$D_{d} = \frac{L\theta(1 - \frac{1}{2}\sin(\Phi/2))}{\sin^{2}(\Phi/2)}, D_{d}' = 0$$

Integral Representation of Dispersion Function

Same as dipole field error representation, we can substitute

$$\frac{\Delta B}{B_0 \rho} \to \frac{\Delta p}{p_0} \frac{1}{\rho}, \quad x_{co} \to D(s) \frac{\Delta p}{p_0}$$
$$D(s) = \frac{\sqrt{\beta_x(s)}}{2\sin \pi v_x} \int_{s}^{s+C} \frac{\sqrt{\beta_x(t)}}{\rho} \cos(\pi v_x - |\psi_x(t) - \psi_x(s)|) dt$$

Normalized dispersion function :

$$X_{d}(s) = \frac{1}{2\sin \pi v_{x}} \int_{s}^{s+C} \frac{\sqrt{\beta_{x}(t)}}{\rho} \cos(\pi v_{x} - |\psi_{x}(t) - \psi_{x}(s)|) dt$$

$$X_{d}(s) = \sqrt{2J_{d}} \cos \Phi_{d}$$

$$P_{d}(s) = \frac{-1}{2\sin \pi v_{x}} \int_{s}^{s+C} \frac{\sqrt{\beta_{x}(t)}}{\rho} \sin(\pi v_{x} - |\psi_{x}(t) - \psi_{x}(s)|) dt$$

$$P_{d}(s) = -\sqrt{2J_{d}} \sin \Phi_{d}$$

$$J_{d} = \frac{1}{2}H(D, D') = \frac{1}{2}\frac{1}{\beta_{x}}[D^{2} + (\beta_{x}D' + \alpha_{x}D)^{2}]$$

Achromatic Lattice

- In principle, dispersion can be suppressed by one focusing quadrupole and one bending magnet.
- With one focusing quad in between two dipoles, one can get achromat condition. In between two bends, we call it arc section. Outside arc section, we can match dispersion to zero. This is so called double bend achromat (DBA) structure.
- We need quads outside arc section to match the betatron functions, tunes, etc.
- Similarly, one can design triple bend achromat (TBA), quadruple bend achromat (QBA), and multi-bend achromat (MBA or nBA) structure.
- For FODO cells structure, dispersion suppression section at both ends of the standard cells.
DBA

Consider a simple DBA cell with a single quadrupole in the middle. In thin-lens approximation, the dispersion matching condition :

$$\begin{pmatrix} D_c \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1/(2f) & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L_1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L & L\theta/2 \\ 0 & 1 & \theta \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Where f is the focal length of quad, θ and L are the bending angle and dipole length, L₁ is the distance between end of dipole to center of quad.

$$f = \frac{1}{2}(L_1 + \frac{1}{2}L), \quad D_c = (L_1 + \frac{1}{2}L)\theta$$

DBA

OPTICAL FUNCTIONS TPS 79J2

β (m)

TBA

FODO Lattice

Dispersion suppression in FODO type structure

- For FODO cells structure, dispersion suppression section at • both ends of the standard cells.
- Usually, the solution can be with one bend (same or smaller • angle) and proper phase advance. It can be with two bends with smaller angle. The figure shown below is the case with two bends and same quadrupole strengths and relations are

$$\theta_{1} = \theta(1 - \frac{1}{4\sin^{2}\phi})$$

$$\theta_{2} = \theta(\frac{1}{4\sin^{2}\phi})$$

$$\theta = \theta_{1} + \theta_{2}$$

$$\theta \text{ and } \phi \text{ : bend angle a}$$

in normal FODO cell

Fig. 7.14. Dispersion suppressor lattice

Dispersion suppression in FODO type structure (so called nBA?)

Same dipole Separated functions dipole Some small beta-beat

(m)

a

Momentum compaction

For small bend angle and large circumference DBA lattice, the first-order momentum compactor can be in an order of 10⁻⁴. Higher-order momentum compaction play important role in the longitudinal motion if the first-order is small.

For off-momentum particle, gradient errors:

$$\Delta K_{x} = \left[-\frac{2}{\rho^{2}} + K(s)\right]\delta + O(\delta^{2}) \approx \left[-\frac{1}{\rho^{2}} - K_{x}(s)\right]\delta \approx -K_{x}(s)\delta,$$

$$\Delta K_{z} = -K(s)\delta + O(\delta^{2}) \approx -K_{z}(s)\delta$$

$$\Delta v_{x} = \frac{1}{4\pi} \oint \beta_{x} \Delta K_{x} ds \approx \frac{-1}{4\pi} \oint \beta_{x} K_{x} ds \delta$$

$$\Delta v_{z} = \frac{1}{4\pi} \oint \beta_{z} \Delta K_{z} ds \approx \frac{-1}{4\pi} \oint \beta_{z} K_{z} ds \delta$$

Chromatici ty :

$$\xi = \frac{d(\Delta v)}{d\delta}$$
, natural chromatict y $\xi_{nat} = \frac{-1}{4\pi} \oint \beta K ds$

FODO N cells :

$$\xi_{nat}^{FODO} = \frac{-1}{4\pi} N(\beta_{max} - \beta_{min})/f = -\frac{\tan(\Phi/2)}{\Phi/2} \nu \approx -\nu$$

 $f (\Delta p/p_o < 0)$ f ($\Delta p/p_o = 0$)

 $(\Delta p/p > 0)$

Chromaticity correction

For a large (negative) natural chromaticity, the tune shift is large with typical energy offset and can cause beam storage lifetime reduction induced by transverse resonances. We need sextupole magnets installed in the storage ring to increase the focusing strength for larger energy beam. Two types of sextupoles, i.e., focusing and defocusing sextupoles, are properly situated. To avoid head-tail instability, a slightly positive chromaticity is preferred.

$$\frac{\Delta B_z}{B_0 \rho} = \frac{B_2}{2B_0 \rho} (x^2 - z^2), \frac{\Delta B_x}{B_0 \rho} = \frac{B_2}{B_0 \rho} xz, B_2 = \partial^2 B_z / \partial x^2 |_{x=z=0}$$
Let $x = x_\beta + D\delta \Rightarrow \frac{\Delta B_z}{B_0 \rho} = -[SD\delta] x_\beta - S(x_\beta^2 - z_\beta^2) - \frac{S}{2} D^2 \delta^2$
and $\frac{\Delta B_x}{B_0 \rho} = -[SD\delta] z_\beta - \frac{S}{2} x_\beta z_\beta$, where $S = -\frac{B_2}{B_0 \rho}$
To the first order $\Delta K_x = SD\delta$, $\Delta K_z = -SD\delta$

$$\xi_z = \frac{-1}{4\pi} \oint \beta_z [K_z + S_F D_F - S_D D_D] ds$$

$$\xi_z = \frac{-1}{4\pi} \oint \beta_z [K_z + S_F D_F + S_D D_D] ds$$
For FODO: $S_F \ell_F = \frac{1}{2f^2 \theta} \frac{\sin \frac{\Phi}{2}}{(1 + \frac{1}{2} \sin \frac{\Phi}{2})}, S_D \ell_{SD} = -\frac{1}{2f^2 \theta} \frac{\sin \frac{\Phi}{2}}{(1 - \frac{1}{2} \sin \frac{\Phi}{2})}$
The Sixth OCPA Accelerator School 2010. Beijing, CCKup. 46

Design Rules for sextupole scheme

- To minimize chromatic sextupoles strengths, it should be located near quadrupoles at least for FODO cells, where $\beta_x D_x$ and $\beta_z D_x$ are maximum.
- A large ratio of β_x/β_z for the focusing and β_y/β_z for the defousing sextupoles are needed.
- The families of sextupoles should be arranged to minimize resonance strengths.
- For strong focusing (low emittance) lattice, strong chromatic sextupole fields are needed to correct chromaticity and such strong nonlinear fields can induce strong nonlinear chromatic effects as well as geometric aberrations. Phase cancellations can help reduce nonlinear chromatic aberrations. Harmonic sextupoles are installed at proper positions to further reduce resonance strengths of geometric aberrations.

Nonlinear Effects of Chromatic Sextupoles

 $x'' + K_x(s)x = -S(s)(x^2 - z^2), \quad z'' + K_y(s)z = S(s)xz$ $x = x_\beta + D\delta$

normalized coordinates:
$$w_{\beta} = \frac{x}{\sqrt{\beta_x}}, w_{\delta} = \tilde{D}\delta = \frac{D}{\sqrt{\beta_x}}\delta$$

 $\tilde{D}'' + v_0^2 \tilde{D} = v_0^2 \beta^{3/2} / \rho + v_0^2 \beta^2 k \tilde{D}\delta - \frac{1}{2} v_0^2 \beta^{5/2} S \tilde{D}^2 \delta,$
 $w_{\beta}'' + v_0^2 w_{\beta} = v_0^2 \beta^2 k w_{\beta} \delta - v_0^2 \beta^2 S D w_{\beta} \delta - \frac{1}{2} v_0^2 \beta^{5/2} S w_{\beta}^2$

- The first two terms cancel the chromatic aberrations to first order locally. However, in real machine, local cancellation might be not perfect and beta-beat and higher harmonics of chromatic terms in the circular machine still exist.
 - The third term is betatron ampltude dependent perturbation and called geometric aberrations. -*I transformation* scheme is to put sextupoles in (2n+1) π phase advance apart in a periodic lattice and this scheme can compensate the effects.

Chromatic Aberrations

Chromatic gradient errors with sextupoles

 $\Delta K(s) = (k - SD)\delta$

Beta – beat :

$$\frac{\Delta\beta(s)}{\beta} = -\frac{\delta}{2\sin\Phi_0} \oint \beta(t)(k(t) - S(t)D(t))\cos[2\nu_0(\pi + \phi(s) - \phi(t)]dt]$$

If chromaticity is corrected locally, there is no induced beta-beat and no half integer resonances. However, in reality, we might need several families of sextupoles to get small beta-beat

Collider need to have local chromatic aberration correction with sextuples at interaction point to ensure small beta-beat at IP and keep beam size as small as possible (high luminosity).

-I transformation

0[°]

0 1

phase advance = $(2n+1)\pi$, n = 0,1,2..

$$M = -I = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$\Delta x' = -\frac{1}{2} S\ell(x^2 - y^2)$$

$$\Delta y' = -S\ell xy$$

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} = M_s(x_{0,}y_{0}) \begin{pmatrix} x_{0} \\ x'_{0} \\ y_{0} \\ y'_{0} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} S\ell x_{0} & 1 & -\frac{1}{2} S\ell y_{0} \\ 0 & 0 & 1 \\ 0 & 0 & S\ell x_{0} \end{pmatrix}$$

 $M_{t} = M_{s}(x_{0,}y_{0}) \cdot (-I) \cdot M_{s}(-x_{0,}-y_{0}) = -I$

For periodic lattice, compensation can across one or several cells. Thick-lens sextupoles together with errors in real machine such as COD, quad gradient errors, and working point selection always lead some limitation in its effectiveness.

Diamond phase cancellation scheme. Horizontal tune ~ 29.12 due to long straight perturbation

Selection of working tune is different from above. Diamond Light Source nominal lattice working tune (27.23, 12.36)

Nonlinear Hamiltonian

$$\begin{split} H &= \frac{1}{2} (x^{2} + K_{x}x^{2} + y^{2} + K_{y}y^{2}) + \frac{S(s)}{2} (x^{3} - 3xy^{2}) \\ H &= H_{0} + V_{3}(x, y, s) \\ H_{0} &= \frac{1}{2} (x^{2} + K_{x}x^{2} + y^{2} + K_{y}y^{2}), \ V_{3} = \frac{S(s)}{2} (x^{3} - 3xy^{2}) \\ V_{3} &= -\frac{\sqrt{2}}{4} J_{x}^{1/2} J_{y} \beta_{x}^{1/2} \beta_{y} S(s) [2\cos \Phi_{x} + \cos(\Phi_{x} + 2\Phi_{y}) + \cos(\Phi_{x} - 2\Phi_{y})] \\ &+ \frac{\sqrt{2}}{12} J_{x}^{3/2} \beta_{x}^{3/2} S(s) [\cos 3\Phi_{x} + 3\cos \Phi_{x}] \\ \Phi_{x} &= \phi_{x} + \chi_{x}(s) - v_{x}\theta, \ \chi_{x}(s) = \int_{0}^{s} \frac{ds}{\beta_{x}} \\ \Phi_{y} &= \phi_{y} + \chi_{y}(s) - v_{y}\theta, \ \chi_{y}(s) = \int_{0}^{s} \frac{ds}{\beta_{y}} \\ (J_{x}, \phi_{x}), (J_{y}, \phi_{y}) \text{ are pairs of conjugate phase - space} \\ \text{Periodic in } s, \text{ Fourier expansion :} \\ H &= v_{x}J_{x} + v_{y}J_{y} + \sum_{\ell} G_{3,0,\ell}J_{x}^{3/2}\cos(3\phi_{x} - \ell\theta + \zeta_{3,0,\ell}) \\ + \dots J_{x}^{1/2}J_{y}\cos(\phi_{x} - 2\phi_{y} - \ell\theta + \zeta_{1,2,\ell}) \\ + \dots J_{x}^{1/2}J_{y}\cos(\phi_{x} - 2\phi_{y} - \ell\theta + \zeta_{1,2,\ell}) \\ + \dots \\ G_{3,0,\ell}e^{j\zeta} &= \frac{\sqrt{2}}{24\pi} \oint \beta_{x}^{3/2}S(s)e^{j(3\chi_{x}(s) - (3v_{x} - \ell)\theta]} ds \end{split}$$

Nonlinear Effects of Chromatic Sextupoles

Sum resonance : $v_x + 2v_y = \ell$

Difference resonance : $v_x - 2v_y = \ell$

Parametric resonance : $v_x = \ell$, $3v_x = \ell$

other higher - order resonances : $4v_x = \ell$, $2v_x \pm 2v_y = \ell$...

Concatenation of sextupoles perturbation to the betatron motion can induce nonlinear betatron detuning.

$$v_{x} = v_{x0} + \alpha_{xx}J_{x} + \alpha_{xy}J_{y}$$
$$v_{y} = v_{y0} + \alpha_{xy}J_{x} + \alpha_{yy}J_{y}$$
$$\alpha_{xx}, \alpha_{xy}, \alpha_{yy} : \text{detuning coefficient}$$

Sextupole Hamiltonian

For the first 9 terms of first-order driving sources: 4 Chromatic terms ,5 Geometry terms \rightarrow 9 families can get first-order optimal solutions

$$h_{jklmp} \propto \sum_{n}^{Nsxt} (b_{3}L)_{n} \beta_{xn}^{\frac{j+k}{2}} \beta_{yn}^{\frac{l+m}{2}} D_{n}^{p} e^{i[(j-k)\varphi_{xn}+(l-m)\varphi_{yn}]} - [\sum_{n}^{Nquad} (b_{2}L)_{n} \beta_{xn}^{\frac{j+k}{2}} \beta_{yn}^{\frac{l+m}{2}} e^{i[(j-k)\varphi_{xn}+(l-m)\varphi_{yn}]}]_{p\neq 0}$$

For the first 12 terms: 4 Chromatic terms ,5 Geometry terms,3 Amplitude dependent terms (second-order terms and critical) need to be minimized.

$$\begin{split} f &= p_1 \left| h_{21000}(v_x) \right|^2 + p_2 \left| h_{10110}(v_x) \right|^2 \\ &+ p_3 \left| h_{30000}(3v_x) \right|^2 \\ &+ p_4 \left| h_{10020}(v_x + 2v_y) \right|^2 + p_5 \left| h_{10200}(v_x - 2v_y) \right|^2 \\ &+ p_6 \left| dv_x / dJ_x \right|^2 + p_7 \left| dv_x / dJ_y \right|^2 \\ &+ p_8 \left| dv_y / dJ_y \right|^2 \\ &+ p_9 \left| h_{11001}(\xi_x) \right|^2 + p_{10} \left| h_{00111}(\xi_y) \right|^2 \\ &+ p_{11} \left| h_{20001}(2v_x(\delta)) \right|^2 + p_{12} \left| h_{00201}(2v_y(\delta)) \right|^2 \end{split}$$

Object Function Including Higher-order Driving terms

Usually, we can get good solution for the first 12 terms optimization. However, we can further reduce 2nd-order terms including 11 more terms.

13 terms in 2nd -order of sextupole strength

- 3 linear tune shift with amplitude
- 8 octupole-like driving terms $4v_x$, $2v_x \pm 2v_y$
- 2 terms generating second-order chromaticity

This nonlinear optimization is very important for the low emittance, high chromaticity lattice. Iterations between linear and nonlinear schemes are proceeded to get acceptable solution.

TLS Storage Ring

For TLS, do we need more than two sextupole families?

Radiation loss per turn (dipole) 128 keV

Only two families of sextupoles for chromaticity correction.

TLS Storage Ring

TPS Lattice Structure

Betatron Tune and Nonlinear Resonance

Tune selection in the lattice very important. Tune should be away from integer, half integer and third-order resonances. Introduction of sextupoles and nonlinear field errors in the magnets can drive higherorder nonlinear resonances. Particle tracking study and fequency (tune)-map analyses can further provide optimization information in tune selection.

Systematic resonances

$$nv_x \pm mv_y = 6p$$

n, m, p are integers

Random resonances

$$nv_x \pm mv_y = p$$

 n, m, p are integers

Matching Conditions

- long straight sections ~ 12 m (quad to quade)
- standard straight sections ~ 7 m (quad to quad)
- circumference 518.4 m, 24 cells, 6-fold
- $\beta_x \sim 10$ m in long straight sections for injection
- $\beta_x \sim 5$ m in standard straight sections for ID
- $\beta_v < 3.5$ m in standard straight sections for ID
- reasonable β_x and $\beta_y < 30$ m anywhere in the whole ring
- fractional horizontal tune < 0.5
- fractional vertical tune < 0.5
- working point away from systematic and random resonances
- large betatron decoupling in the arc for sextupole chromaticity correction
- large dispersion in the arc center to decrease the sextupole strength

Linear Lattice Matching

- Computer design codes are used in the matching. (for example MAD)
- Matching method such as simplex command is to minimize the penalty function by simplex method. Make sure enough varying parameters for the selected constraints.
- Starting from unit cell and impose constraints on optical functions such as D, D' at both ends of dipoles, local and global betatron functions, phase advance per cell, etc. Weighting factors are also given.
- Construct superperiod structure and do the same matching process with different constraints.
- Maximum strengths of quads are limited.
- Ring tunes are matched.
- Not always can find stable solutions and need change initial conditions for matching.
- Examine the global parameters and fitted parameters. If satisfactory, go to nonlinear optimization.

TPS Storage Ring Lattice Functions

24 DBA cells

Major Parameters of TPS Storage Ring

Circumference C (m)	518.4
Energy E (GeV)	3.0
Beam current (mA)	400
Natural emittance ε_{x0} (nm-rad)	1.6
Straight sections (m)	12(x6) + 7(x18)
Radiofrequency (MHz)	499.654
Harmonic number h	864
RF voltage (MV)	3.5
Energy loss per turn (dipole) (MeV)	0.85269
Betatron tune v _x /v _y	26.18 /13.28
Momentum compaction (a1, a2)	$2.4 \times 10^{-4}, 2.1 \times 10^{-3}$
Natural energy spread σ_E	8.86 ×10 ⁻⁴
Damping time $\tau_x/\tau_v/\tau_s$ (ms)	12.20 / 12.17 / 6.08
Natural chromaticity ξ_x/ξ_y	-75 / -26
Synchrotron tune v _s	0.00609
Bunch length (mm) σ _l	2.86

Source point	σ _x (μm)	$\sigma_{x'}$ (µrad)	σ _y (μm)	σ _{y'} (µrad)
Long straight center	165.10	12.49	9.85	1.63
Short straight center	120.81	17.26	5.11	3.14
Dipole (1 degree source point)	39.73	76.11	15.81	1.11

TPS injector parameters

Linac energy : 150 MeV Booster energy: 3 GeV Booster circumference: 496.8 m Lattice structure: Modified FODO Booster emittance: 10 nm-rad Repetition rate: 3 Hz RF: 500 MHz

Nonlinear effects

Sufficient dynamic aperture (maximum allowable particle oscillation amplitude) are necessary to guarantee long enough beam current lifetime and beam injection efficiency. So, we need to correct nonlinear effects to get acceptable dynamic aperture, both on and off-energy.

Low emittance → strong focusing quadrupoles → large chromatic aberration effects → strong sextupoles to correct chromaticities → strong nonlinear effects → sextupole scheme & nonlinear optimization → good dynamic aperture and energy acceptance (done) → go back to linear lattice matching if not satisfied

Nonlinear optimization

- Quality factor: Tune shift with amplitude, Phase space plots, Tune shift with energy, Dynamic aperture (on and off momentum, 4D, 6D), Frequency Map Analysis
- **Codes: OPA, BETA, Tracy-2, MAD, Patricia, AT, elegant, etc.**
- **4** 8 families of sextupoles are used.
- Chromaticities are corrected to slightly positive.
- **Weighting factors, sextupole families, positions are varied.**
- Effects on the dynamic aperture in the presence of ID, field errors, chamber limitation, alignment errors, etc. are studied.

TPS Sextupole scheme

Only Chromatic Sextupoles

Nonlinear Optimization with Sextupoles

Paran, Minin, U/D Select Diagram, Incl./Excl. Quads, HCopy, Quit. Penalty = 5.0E+0004 Chrom-X 2.0001 Qx 21000 3.1930 Qx 20000 0.0224 Qx 10110 1.92266 Qx+2Qy 10200 2.1000 2Qx 20001 5.5129 2Dy 00201 8.6627 2Jx = 40.00 µm dp/p = 4.00 X dQx/dJx -0.6256 dQy/dJy 0.4068 2Qy 20110 21.7269 Qy 2010 2.2553 dQy/dJy 0.4068 2Qy 20110 21.7269 2Qy 2020 11.5736 2Qy 2020 11.5736 2Qy 2020 11.5736 2Qy 2020 11.5746 2Qx 20110 21.7269 2Qy 2020 11.5746 2Qy 20	↑↓ select, \leftrightarrow change [Ctrl+ \leftrightarrow larger steps], X lock a sextupole.				
Penalty = $5.0E+0004$ Chron-X 2.0001 Qx = 21000 3.1930 Qx = 21000 0.0224 Qx = 10110 1.9296 Qx = 20001 5.5129 2Qx = 20001 5.5129 $2Qx = 40.00 \ \mu m}$ $dy/dy = 4.00 \ \chi$ $dy/dy = 4.00 \ \chi$ $dy/dy = 4.00 \ \chi$ dy/dy = 0.4068 2Qx = 20110 2.2553 dQy/dy = 20110 2.17269 2Qy = 20200 1.5746 Qx = 2000 1.5746 $Qx = 40.00 \ \chi$ $dy/dy = 1.500 \ \chi$ dy/dy = 0.4068 $2Qx = 20110 \ \chi$ dy/dy = 0.4068 $dy/dy = 0.00 \ \chi$ dy/dy = 0.4068 $dy/dy = 0.00 \ \chi$ $dy/dy = 0.00 \ \chi$ dy/dy = 0.4068 $dy/dy = 0.00 \ \chi$ dy/dy = 0.4068 dy/dy = 0.4068 $dy/dy = 0.517 \ \chi$ dy/dy = 0.5256 $dy/dy = 0.517 \ \chi$ dy/dy = 0.5162 $dy/dy = 0.517 \ \chi$ dy/dy = 0.5162 dy/dy	Param., Minim., U/D Select Diagram, Incl./Excl. Quads, HCopy, Quit.				
$\begin{array}{c} Chron-Y & 2.0001 \\ Chron-Y & 2.0001 \\ 0 \times 20001 & 0.0224 \\ 0 \times 10101 & 1.9296 \\ 0 \times -20y & 10020 & 1.0966 \\ 0 \times -20y & 10200 & 2.1000 \\ 20 \times & 20001 & 5.5128 \\ 20 \times & 00201 & 8.6627 \\ 23 \times & = 40.00 \ \mu m \\ dp/p & = 4.00 \ \chi \end{array}$	Penalty = 5.0E+0004		Q× 21000 //		
0x 21000 3.1930 $0x$ 30000 0.0224 $0x$ 10110 1.9296 $0x + 20y$ 10020 2.1000 $20x$ 20001 5.5128 $20y$ 00201 8.6627 $2dx$ 20001 5.5128 $2dx$ 20001 5.5128 $2dx$ 20001 8.6627 $2dx$ 20001 8.6627 $2dx$ 20001 8.6627 $2dx$ 20001 8.6627 $2dx$ 40.00 µm $2dx$ 40.00 20 dx -0.6256 dx -0.6256 dx -0.4069 $2dx$ 20000 $20x$ 31000 2.2553 -4.14 $20x$ 20110 21.5366 -5.17 $20x$ 200200 $20x + 20y$ 20300 2.2559 -3.667 $20x + 20y$ 20300 $2.0.6 Chron-X - 19.1186$ -3.627	Chrom-X 2.0001				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chrom-Y 2.0001				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q× 21000 3.1930				
$\begin{array}{c} 0^{\times} & 10100 & 1.9296 \\ 0^{\times} + 20y & 10200 & 2.1000 \\ 20x & 20001 & 5.5128 \\ 20y & 00201 & 8.6627 \\ 2Jx & = 40.00 \ \text{µm} \\ 2Jx & = 40.00 \ \text{µm} \\ 2Jx & = 40.00 \ \text{µm} \\ dp/p & = 4.00 \ \text{x} \end{array}$	3Q× 30000 0.0224				
$\begin{array}{c} 0 \times -209 & 10200 & 2.1000 \\ 0 \times -209 & 10200 & 2.1000 \\ 20 \times & 20001 & 5.5128 \\ 20 \Psi & 00201 & 8.6627 \\ 2J \times & = 40.00 \ \mu\text{m} \\ 2J \times & = 40.00 \ \mu\text{m} \\ dp/p & = 4.00 \ \chi \end{array}$	Q× 10110 1.9296				
$\begin{array}{c} 0x+2dy \ 10200 \ 2.1000 \\ 20x \ 20001 \ 5.5128 \\ 20y \ 00201 \ 8.6627 \\ 2Jx \ = 40.00 \ \mu m \\ 2Jx \ = 40.00 \ \mu m \\ 2Jx \ = 40.00 \ \mu m \\ dp/p \ = 4.00 \ X \end{array}$	Ux-2Ug 10020 1.0966				
$\begin{array}{c} 20 \times & 20001 & 5.5128 \\ 20 \ y & 00201 & 8.6627 \\ 2J \times & = 40.00 \ \mu m \\ JJ \times & = 40.00 \ \mu m \\ dp/p & = 4.00 \ \chi \end{array}$ $\begin{array}{c} 11.45 \\ 122 + 2.02 \\ d0 \times / dJ \times & -0.6256 \\ d0 \times / dJ \times & -0.6256 \\ d0 \times / dJ \times & 1.5326 \\ d0 \times / dJ \times & 0.4068 \\ 20 \times & 20110 \ 2.2553 \\ 20 \times & 20110 \ 21.7269 \\ 20 \times & 20110 \ 21.5736 \\ 20 \times & 20110 \ 21.5736 \\ 20 \times & 20200 \ 2.2358 \\ 20 \Psi & 00310 \ 3.0667 \\ d0 \Psi & 00400 \ 0.8864 \\ 2.0. \ Chron-X \ 1.3233 \\ 2.0. \ Chron-Y \ -19.1186 \end{array}$	Qx+2Q9 10200 2.1000				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2Q× 20001 5.5128				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2Qy 00201 8.6627				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2Jx = 40.00 \mu m$				
$ \frac{dp/p}{dp} = 4.00 \times $ $ \frac{dp/p}{dq} = 4.00 \times $ $ \frac{dp/p}{dq} = 4.00 \times $ $ \frac{dp/q}{dq} = -0.6256 \\ \frac{dq}{dq} = -0.6256 \\ \frac{dq}{dq} = -0.6256 \\ \frac{dq}{dq} = -0.6256 \\ \frac{dq}{dq} = -0.66256 \\ \frac{dq}{dq} = -0.662566 \\ \frac{dq}{dq} = -0.662566 \\ \frac{dq}{dq} = -0.662566 \\ \frac{dq}{dq} = $	$2Jx = 40.00 \mu m$				
d0x/dJx -0.6256 d0x,y/dJy,x 1.5326 d0y/dJy 0.4068 20x 31000 2.2553 40x 40000 0.3808 20x 20110 21.7269 20y 11200 11.5736 20x 20020 11.5736 20x+20y 20020 1.5736 20x+20y 20200 2.2358 20y 00310 3.0667 40y 00400 0.8864 2.0. Chron-X 1.3233 2.0. Chron-Y -19.1186	dp/p = 4.00 %		<i>A *</i>		
d0x/dJx -0.6256 d0x,y/dJy,x 1.5326 d0y/dJy 0.4068 20x 31000 2.2553 40x 40000 0.3808 20x 20110 21.7269 20y 11200 11.5736 20y 11200 11.5736 20x+20y 20200 2.2358 20y 00310 3.0667 40y 00400 0.8864 2.0. Chron-X 1.3233 2.0. Chron-Y -19.1186					
dQx, y/dJy, x 1.5326 dQy/dJy 0.4068 2Qx 31000 2.2553 4Qx 40000 0.3808 2Qx 2010 21.7269 2Qy 11200 11.5736 2Qx-2Qy 20020 11.5736 2Qy 00310 3.0667 4Qy 00400 0.8864 2.0. Chrom-X 1.3233 2.0. Chrom-Y -19.1186	dQx/dJx -0.6256		\$1 1.45		
dQy/dJy 0.4068 20x 31000 2.2553 4Qx 40000 0.3808 20x 20110 21.7269 20y 11200 11.5736 20x-20y 20020 11.5446 20x+20y 20200 2.2358 20y 00310 3.0667 40y 00400 0.8864 2.0. Chron-X 1.3233 2.0. Chron-Y -19.1186	dQx,y/dJy,x 1.5326				
20x 31000 2.2553 40x 40000 0.3808 20x 20110 21.7269 20y 11200 11.5736 20x+20y 20200 2.2358 20y 00310 3.0667 40y 00400 0.8864 2.0. Chrom-X 1.3233 2.0. Chrom-Y -19.1186	dQy∕dJy 0.4068				
20x 31000 2.2553 40x 40000 0.3808 20x 20110 21.7269 20y 11200 11.5736 20x+20y 20020 11.5446 20y 00310 3.0667 40y 00400 0.8864 2.0. Chrom-X 1.3233 2.0. Chrom-Y -19.1186			\$5 4.14		
40x 40000 0.3808 20x 2010 21.7269 20y 11200 11.5736 20x-20y 20020 11.5446 20x+20y 20200 2.2358 20y 00310 3.0667 40y 00400 0.8864 2.0. Chrom-X 1.3233 2.0. Chrom-Y -19.1186	20× 31000 2.2553		<u>\$6 -5.17</u>		
20x 20110 21.7269 20y 11200 11.5736 20x-20y 20020 11.5446 20x+20y 20200 2.2358 20y 00310 3.0667 40y 00400 0.8864 2.0. Chrom-X 1.3233 2.0. Chrom-Y -19.1186	4Q× 40000 0.3808		SD -3.62		
2Qy - 2Qy 20020 11.5736 2Qx - 2Qy 20020 11.5446 2Qx + 2Qy 20200 2.2358 2Qy 00310 3.0667 4Qy 00400 0.8864 2.0. Chrom-X 1.3233 2.0. Chrom-Y -19.1186	20× 20110 21.7269		SF 4.97		
20x-209 20020 1.3446 20x+209 20310 3.0667 40y 00400 0.8864 2.0. Chron-X 1.3233 2.0. Chron-Y -19.1186	20g 11200 11.5736				
20y 00310 3.0667 40y 00400 0.8864 2.0. Chron-X 1.3233 2.0. Chron-Y -19.1186	20x+20y 20020 11.3446				
4Qy 00400 0.8864 2.0. Chron-X 1.3233 2.0. Chron-Y -19.1186	20u 00310 3 0667				
2.0. Chron-X 1.3233 2.0. Chron-Y -19.1186	404 00400 0.8864				
2.0. Chron-X 1.3233 2.0. Chron-Y -19.1186		Г			
2.0. Chron-Y -19.1186	2.0. Chrom-X 1.3233				
	2.0. Chrom-Y -19.1186				
Quads included			Quads included		

OPA

8 families of sextupoles for nonlinear optimization. Chromaticity of +5 in both planes are still with acceptable dynamic aperture and energy acceptance.

Phase Space Betatron Function vs Energy Tune Shifts vs. Amplitude and Energy Dynamic Aperture

Off-momentum Optics Change

RF Energy Aperture <u>3.5 MV RF</u> (no chamber limitation)

$$\left(\frac{\Delta p}{p_0}\right)_{acc}^2 = \frac{eV_0 \sin \psi_s}{\pi h \alpha_c c p_0} \left(\sqrt{q-1} - \cos^{-1}(1/q)\right)$$
$$q = \frac{eV_0}{U_0} = \frac{1}{\sin \psi_s}$$
$$\text{TPS}: U_0 = 0.85 MeV, \text{ No ID}$$

Dynamic Aperture and FMA

Tune diffusion rate D= $\log_{10}((\Delta v_x)^2 + (\Delta v_y)^2)^{1/2}$ for tune difference between the first 512 turns and second 512 turns
Dynamic Aperture and Frequency Map Analysis

With multipole errors

Tune diffusion rate D= $\log_{10}((\Delta v_x)^2 + (\Delta v_y)^2)^{1/2}$ for tune difference between the first 512 turns and second 512 turns

Emittance

- For proton or ion beams, synchrotron radiation damping time is very long and transverse and longitudinal emittance of beam motion is constant and do not depend on lattice design. For electron and positron beams, lattice design play an important role in emittance optimization.
- For colliders, it is optimized for high luminosity at collision points.
- For synchrotron light sources, it is optimized for high brightness or brilliance at every light port, and small emittance is the most demanding parameter.
- By increasing synchrotron radiation damping rate with wigglers can help reduce natural emittance.

Equilibrium Beam Emittance

In equilibrium : $\frac{\sigma_x^2}{\beta_x} = \tau_x \zeta_x$ $\tau_x = \text{damping coefficient} = -\frac{1}{2} \frac{\langle P_y \rangle}{F} J_x$ $\zeta_{x} = \text{diffusion coefficient} = \frac{55}{48\sqrt{2}} \frac{\langle P_{\gamma} \hbar \omega_{c} H_{x} \rangle}{F^{2}}$ with $H_{x} = \gamma_{x} D_{x}^{2} + 2\alpha_{x} D_{y} D_{y}^{'} + \beta_{y} D_{y}^{'2}$ and $P_{\gamma}(\text{GeV/s}) = \frac{2}{3}r_cmc^2\frac{c\beta^4\gamma^4}{\rho^2}$ or more pratical units, $P_{\gamma} = \frac{cC_{\gamma}}{2\pi} \frac{E^4}{\rho^2}, C_{\gamma} = \frac{4\pi}{3} \frac{r_c}{(mc^2)^3} = 8.8575 \times 10^{-5} \,\text{m/GeV}^3$ and critical energy $\varepsilon_c = \frac{3}{2}\hbar c \frac{\gamma^3}{\rho} \Rightarrow \varepsilon_c (\text{keV}) = 2.218 \frac{E^3(\text{GeV})}{\rho(\text{m})} = 0.665 E^2(\text{GeV})B(\text{T})$ Horizontal natural emittance $\varepsilon_x = \frac{\sigma_x^2}{\beta_x} = C_q \gamma^2 \frac{\langle H_x / \rho^3 \rangle}{J \langle 1 / \rho^2 \rangle}, C_q = 3.83 \times 10^{-13} m$

Equilibrium Beam Emittance

For an ideal flat accelerator without errors, due to the finite emission angle of synchrotorn radiation, we can get natural vertical emittance as :

$$\varepsilon_{y} = C_{q} \frac{\langle \beta_{y} / \rho^{3} \rangle}{J_{y} \langle 1 / \rho^{2} \rangle} \approx 10^{-13} m - rad$$

However, due to spurious vertical dispersion by errors,

 $\left|\varepsilon_{y}=C_{q}\gamma^{2}\frac{\langle H_{y}/\rho^{3}\rangle}{J_{y}\langle 1/\rho^{2}\rangle}>>10^{-13}m-rad,H_{y}=\gamma_{y}D_{y}^{2}+2\alpha_{y}D_{y}D_{y}^{'}+\beta_{y}D_{y}^{'2}\right|$

Minimum Emittance in FODO

For FODO Cell

$$\begin{split} \beta_{F} &= \frac{2L}{\sin \Phi} (1 + \sin \frac{\Phi}{2}), \beta_{d} = \frac{2L}{\sin \Phi} (1 - \sin \frac{\Phi}{2}), \sin \frac{\Phi}{2} = \frac{L}{2f} \\ D_{F} &= \frac{L\theta}{\sin^{2} \frac{\Phi}{2}} (1 + \frac{1}{2} \sin \frac{\Phi}{2}), D_{D} = \frac{L\theta}{\sin^{2} \frac{\Phi}{2}} (1 - \frac{1}{2} \sin \frac{\Phi}{2}) \\ H_{F} &= L\theta^{2} \frac{\cos(\Phi/2)}{\sin^{3}(\Phi/2)1 + \sin(\Phi/2)} (1 + (1/2)\sin(\Phi/2))^{2} \\ H_{D} &= L\theta^{2} \frac{\cos(\Phi/2)}{\sin^{3}(\Phi/2)1 - \sin(\Phi/2)} (1 - (1/2)\sin(\Phi/2))^{2} \\ \langle H \rangle &\approx \frac{1}{2} \rho \theta^{3} \frac{\cos(\Phi/2)}{\sin^{3}(\Phi/2)} \left[\frac{(1 + (1/2)\sin(\Phi/2))^{2}}{1 + \sin(\Phi/2)} + \frac{(1 - (1/2)\sin(\Phi/2))^{2}}{1 - \sin(\Phi/2)} \right] \\ F_{FODO} &= \frac{1 - \frac{3}{4} \sin^{2}(\Phi/2)}{\sin^{3}(\Phi/2)\cos(\Phi/2)} / J_{x} \end{split}$$

$$\varepsilon_x(\min) = F_{FODO}C_q \gamma^2 \theta^3,$$

where F ~ 1.3 for phase advance ~ 140° per cell

FODO lattices are commonly used in colliders, booster synchrotrons in which emittance is not pushed to extremely small values.

Minimum Emittance in DBA

S.Y. Lee, "Emittance optimization in three- and multiple-bend achromats", Phy. Rev. E, 52, 1940, 1996 and "Accelerator Physics", World Scientific, 2nd edition, 2004

Each MEDBA module with horizontal phase advance across dipole of 156.7^o, dispersion matching 122^o and other. In real machine phase advance is much smaller.

 $\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$ $\alpha(s) = \alpha_0 - \gamma_0 s$ $\gamma(s) = \gamma_0$ $D(s) = D_0 + D_0's + \rho(1 - \cos\theta) = \rho(1 - \cos\theta)$ $D'(s) = D_{0}' + \sin \theta = \sin \theta$ $\left\langle H\right\rangle = \frac{1}{\rho} \int_{0}^{\rho} H(s) ds = \frac{1}{\rho} \int_{0}^{\rho} (\beta(s)D'^{2}(s) + 2\alpha(s)D(s)D'(s) + \gamma D^{2}(s)) ds$ $=\rho\theta^{3}(\frac{\beta_{0}}{3\ell}-\frac{\alpha_{0}}{4}+\frac{\gamma_{0}\ell}{20})$ $\varepsilon_{x} \cong \frac{C_{q} \gamma^{2} \theta^{3}}{I} (\frac{\beta_{0}}{3\ell} - \frac{\alpha_{0}}{4} + \frac{\gamma_{0} \ell}{20})$ Minimum emittance : $\frac{\partial \varepsilon_x}{\partial \alpha_0} = \frac{\partial \varepsilon_x}{\partial \beta_0} = 0$ $\Rightarrow \beta_{0,\min} = (6/\sqrt{15})\ell, \alpha_{0,\min} = \sqrt{15}$ $\varepsilon_x(\min) = \frac{C_q \gamma^2 \theta^3}{4\sqrt{15}I} \cong 0.0645 \frac{C_q \gamma^2 \theta^3}{I}$ Minimum H occurs at $s^* = \frac{3}{8}\ell$ with $\beta^* = \frac{3}{4\sqrt{60}}\ell$

Exercise 3

Minimum Emittance in DBA

For non-achromat lattice, only one type of dipole and beta and dispersion functions are symmetric at dipole center

TME (non - achromat)
$$\Rightarrow \alpha(s = \ell/2) = 0, D'(s = \ell/2) = 0$$

 $\varepsilon_x \approx \frac{C_q \gamma^2 \theta^2}{4J_x} (\frac{\beta_0}{3\ell} - \frac{\alpha_0}{4} + \frac{\gamma_0 \ell}{20}) \text{ for small } \theta$
 $\beta_{0,\min} = \frac{8}{\sqrt{15}} \ell, \alpha_{0,\min} = \sqrt{15}, D_{0,\min} = \frac{1}{6} \rho \theta^2, D_{0,\min}' = -\frac{1}{2} \theta$
 $\varepsilon_x(TME) = \frac{C_q \gamma^2 \theta^3}{12\sqrt{15}J_x} = 0.0215 \frac{C_q \gamma^2 \theta^3}{J_x}$

Design Emittance

- In practice, real machine will not be able to reach theoretical minimum emittance because of the constraints in betatraon function limitation, tune range, nonlinear sextupole scheme, and engineering limitation, etc.
- Usually, a few factor larger in real machine is feasible.
- For 24-cell 3GeV, theoretical minimum emittance is 1.92 nm-rad for the achromatic DBA. In real design, it can reach 4.9 nm-rad.
- For non-achromat configuration, we can reach 1.6 nm-rad (as compared with the TME of 0.64 nm-rad)

Minimum Emittance in TBA

For TBA (achromatic):

If
$$\frac{L_2^3}{\rho_2^2} = \frac{L_1^3}{\rho_1^2}$$
 and phase advance $\phi = 127.76^\circ$, i.e.,
for isomagnetic ring, $L_2 = 3^{1/3}L_1$, or $\rho_1 = \sqrt{3}\rho_2$,
then $\varepsilon_x(\min) = \frac{1}{4\sqrt{15}} \frac{C_q \gamma^2 \theta_1^3}{J_x}$,

where L_1, θ_1 is the outer dipole length and bending radius.

The Sixth OCPA Accelerator School, 2010, Beijing. CCKuo-81

Minimum Emittance in QBA

For QBA (achromatic):

If
$$\frac{L_2^3}{\rho_2^2} = \frac{L_1^3}{\rho_1^2}$$
, i.e.,

for isomagenti ce ring, $L_2 = 3^{1/3} L_1$, or $\rho_1 = \sqrt{3}\rho_2$,

then
$$\varepsilon_x(\min) = \frac{1}{4\sqrt{15}} \frac{C_q \gamma^2 \theta_1^3}{J_x},$$

where L_1, θ_1 is the outer dipole length and bending radius.

If number of dipoles in DBA, TBA and QBA are the same, then

$$\epsilon_{\text{METBA}} = \left(\frac{3}{2+3^{1/3}}\right)^3 \epsilon_{\text{MEDBA}} = 0.66 \epsilon_{\text{MEDBA}}$$
$$\epsilon_{\text{MEQBA}} = \left(\frac{2}{1+3^{1/3}}\right)^3 \epsilon_{\text{MEDBA}} = 0.55 \epsilon_{\text{MEDBA}}$$

REVIEW OF SCIENTIFIC INSTRUMENTS 78, 055109 (2007)

Quadruple-bend achromatic low emittance lattice studies

M. H. Wang, H. P. Chang, H. C. Chao, P. J. Chou, C. C. Kuo, and H. J. Tsai National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

S. Y. Lee,^{a)} W. M. Tam, and F. Wang Department of Physics, Indiana University, Bloomington, Indiana 47405

When the storage ring operates at the nonachromatic mode, the dispersion function is not zero in the ID straight sections, and thus the beam momentum spread can contribute to the horizontal beam width. We define the "one dimensional (1D) effective emittance" in the ID section as

$$\boldsymbol{\epsilon}_{x,1\mathrm{D}} = \boldsymbol{\epsilon}_x + \mathcal{H}_{\mathrm{ID}} \boldsymbol{\sigma}_{\delta}^2, \tag{3}$$

where \mathcal{H}_{ID} is the \mathcal{H} -function at the ID locations, $\sigma_{\delta}^2 = C_q \gamma^2 / (\mathcal{J}_E \rho)$ is the square of the rms momentum spread, and $\mathcal{J}_E = 2 + I_4 / I_2 \approx 2$ is the longitudinal damping-partition number. More commonly, in the light source community, the effective emittance is defined as

$$\boldsymbol{\epsilon}_{x,\text{eff}} = \sqrt{\boldsymbol{\epsilon}_{x}\boldsymbol{\epsilon}_{x,1\text{D}}}.$$
(4)

Since it is difficult to design a lattice reaching either the MEDBA or the TME condition, we ask a simple question: are we better off with the achromatic or the nonachromatic mode of operation? Let us assume we can design a lattice in the achromatic mode with $\epsilon_{x,a}=f_a\epsilon_{MEDBA}$ and another non-achromatic mode with $\epsilon_{x,na}=f_n\epsilon_{TME}$, where both f_a and f_{na} are typically about 2–4. The effective emittances of these two lattices become

$$\boldsymbol{\epsilon}_{\boldsymbol{x},\mathbf{a}} = \frac{f_{\mathbf{a}}}{4\sqrt{15}\mathcal{J}_{\boldsymbol{x}}} C_q \boldsymbol{\gamma}^2 \boldsymbol{\theta}^3, \tag{5}$$

$$\boldsymbol{\epsilon}_{x,1\mathrm{D,na}} = \frac{f_{\mathrm{na}}}{12\sqrt{15}\mathcal{J}_x} C_q \gamma^2 \theta^3 + \frac{\rho \theta^3}{3\sqrt{15}} \frac{C_q \gamma^2}{\mathcal{J}_E \rho},\tag{6}$$

where we have used $\mathcal{H}_{ID} \approx \mathcal{H}_{TME}$. Assuming $\mathcal{J}_x \approx 1$ and $\mathcal{J}_E \approx 2$, we find

$$\frac{\boldsymbol{\epsilon}_{x,1\mathrm{D,na}}}{\boldsymbol{\epsilon}_{x,\mathrm{a}}} \approx \frac{f_{\mathrm{na}} + 2}{3f_{\mathrm{a}}}, \quad \frac{\boldsymbol{\epsilon}_{x,\mathrm{eff,na}}}{\boldsymbol{\epsilon}_{x,\mathrm{a}}} \approx \frac{\sqrt{f_{\mathrm{na}}(f_{\mathrm{na}} + 2)}}{3f_{\mathrm{a}}}.$$
 (7)

If both f_a and f_{na} are 2, the 1D and effective emittance of the nonachromatic lattice are about about 0.66 and 0.47 of the achromatic one, respectively, i.e., the nonachromatic lattice can provide *higher beam brilliance*. However, the emittance reduction factor is not 1/3.

Effective emittance

With dispersion in the long straights, we can reduce the natural emittance by a factor of 3, but the effective emittance is

 $\varepsilon_{x,eff}^{2} = \langle x^{2} \rangle \langle x^{\prime 2} \rangle - \langle xx^{\prime} \rangle^{2}$ $\varepsilon_{x,eff} = \sqrt{\varepsilon_{x}^{2} + H_{ID}\sigma_{E}^{2}\varepsilon_{x}}$ $H_{ID} = \gamma_{x}D_{x}^{2} + 2\alpha_{x}D_{x}D_{x}^{\prime} + \beta_{x}D_{x}^{\prime 2}$ At the symmetry point of the long straights,

$$\varepsilon_{eff} = \varepsilon_x \sqrt{1 + \frac{(\sigma_E D_x)^2}{\varepsilon_x \beta_x}}$$

Closed Orbit Distortion

In reality, dipole field errors distributed around the ring:

$$y_{co}(s) = \int_{s}^{s+c} G(s,s') \frac{\Delta B(s')}{B\rho} ds'$$

where $G(s,s') = \frac{\sqrt{\beta(s)\beta(s')}}{2\sin\pi\nu} \cos(\pi\nu - |\psi(s) - \psi(s')|)$

In dipole angular kick form:

$$y_{co}(s) = \frac{\sqrt{\beta(s)}}{2\sin\pi\nu} \sum_{i=1}^{N} \theta_i \sqrt{\beta(s_i)} \cos(\pi\nu - |\psi(s) - \psi(s_i)|) \qquad \theta_i = \frac{\Delta B(s_i)}{B\rho} ds_i$$
$$y_{co,rms} = \frac{\sqrt{\beta(s)\beta}}{2\sqrt{2}|\sin\pi\nu|} \sqrt{N} \theta_{rms}$$

due to quadrupole misalignment $\theta = \frac{(\partial B_z / \partial x)\ell}{B\rho} \Delta y = \frac{\Delta y}{f}$ $y_{co,rms} \approx \left\{ \frac{\beta_{av}}{2\sqrt{2}f_{av}} |\sin \pi v| \sqrt{N_q} \right\} \Delta y_{rms}, \quad \begin{array}{l} \text{The coefficient in curly brackets is called sensitivity or amplification factor} \end{array}$

"cusp" where error kinks take place(0.5mrad in x and 1 mrad in y)

Orbit distortions due to single dipole error kick in x and y planes in TLS ring, working point (7.18, 4.13) without errors.

An example in TLS storage ring:

$$x_{co,rms}^{2}(mm) = (32.3)^{2} \Delta x_{q,rms}^{2}(mm) + (3.5)^{2} (\frac{\Delta B\ell}{B\ell})_{rms}^{2} (10^{-3})$$
$$z_{co,rms}^{2}(mm) = (22.6)^{2} \Delta z_{q,rms}^{2}(mm) + (9.3)^{2} (\Delta \theta_{s,BM})_{rms}^{2}(mrad)$$

COD before correction (compared with model simulation with errors input) in SRRC Storage ring at commissioning stage in1993. Corrected COD is shown too.

Closed Orbit Correction Methods:

Harmonic method, Beam-bump method. Least-squares method, Singular value decomposition method, etc.

SVD (Singular Value Decomposition) method: for any rectangular matrix A[m x n] with rank k, there exist unitary matrices U[m x m] and V[n xn] such that

$$A = UWV^{T}$$

$$UU^{T} = U^{T}U = VV^{T} = V^{T}V = 1 \text{ orthogonal}$$

$$U^{-1} = U^{T}, V^{-1} = V^{T}$$

$$\vec{y} = -A\vec{\theta} \Rightarrow \vec{\theta} = -A^{-1}\vec{y} = -VW^{-1}U^{T}\vec{y}$$

$$\vec{\theta} = -V(diag(1/w_{j}))U^{T} \cdot \vec{y}$$

If $1/w_j >$ threshold, let $1/w_j = 0$,

non - zero up to k

rms strength of correctors reduced—corrector ironing, good for the reduction of vertical dispersion

COD correction, SVD method:

$$\Delta y_{co}(s_j) = \frac{\sqrt{\beta(s_j)}}{2\sin \pi \nu} \sum_{i=1}^N \theta_i \sqrt{\beta(s_i)} \cos(\pi \nu - |\psi(s_j) - \psi(s_i)|)$$

$$A_{ji} = \frac{\sqrt{\beta(s_j)}}{2\sin \pi \nu} \sqrt{\beta(s_i)} \cos(\pi \nu - |\psi(s_j) - \psi(s_i)|)$$

The distorted orbit can be minimized at least at the BPM to the desired value so that

$$\vec{\theta}_n = -A^{-1}\Delta \vec{y}_{co,m}$$

SVD algorithm is employed in the simulations.

COD Correction Scheme at TPS

Girder displacement x, y (mm)	0.1
Girder roll θ (mrad)	0.1
Quad and sext displacement x,y w.r.t. girder (mm)	0.03
Dipole displacement x,y (mm)	0.5
Dipole roll θ (mrad)	0.1
Dipole field error (10 ⁻³)	1
BPMs displacement x, y (mm)	0.1

Error Source (rms) 3 sigma truncated

7 BPM each cell 3 HC(+1) and 4 VC(+1) each cell for SVD but all (7) sextupoles are with HC and VC.

Amplification factor	Ax rms (max)	Ay rms (max)	
Quad displacement	55 (97)	40 (51)	
Girder displacement	30 (54)	8 (10)	
Dipole roll θ	-	5.8 (7.8)	
Dipole field error	1.1 (1.9)	-	

COD due to Errors: Horizontal: 3.8 mm rms Vertical : 2.2 mm rms After correction: Horizontal: 0.08 mm rms

Vertical : 0.06 mm rms

TPS COD

 a) Horizontal COD before and after correction in one superperiod in TPS for 50 random machines.

b) Vertical COD before and aftercorrection in one superperiod in TPS for50 random machines

Correction Capability and Residual COD

	Correctors Used	Number of eigenvalues used	Mean of < cor. Str. > (mrad)	Max of cor. Str. (mrad)	Max COD at BPM (mm)	rms COD at BPM (mm)
la	(2,4,6)	72	7.88E-02	4.02E-01	3.71E-01	8.07E-02
	(1,4,6)	72	7.34E-02	3.97E-01	3.46E-01	8.35E-02
	(2,4,7)	72	7.35E-02	4.34E-01	3.66E-01	8.32E-02
zont	(1,4,7)	72	6.69E-02	3.41E-01	3.67E-01	8.55E-02
Hori	168, (C1-C7)x24	72	3.20E-02	1.70E-01	3.53E-01	8.17E-02
		96	5.44E-02	4.35E-01	2.92E-01	6.87E-02
		144	1.22E-01	7.93E-01	2.12E-01	4.06E-02
		168	1.63E-01	9.73E-01	4.92E-02	7.71E-03
Vertical	(1,3,5,7)	96	4.84E-02	2.45E-01	3.38E-01	6.76E-02
	(2,3,5,7)	96	5.64E-02	3.51E-01	3.36E-01	7.18E-02
	168, (C1-C7)x24	48	1.35E-02	8.73E-02	3.95E-01	9.23E-02
		72	1.98E-02	1.43E-01	3.42E-01	7.97E-02
		96	3.08E-02	1.92E-01	3.10E-01	6.82E-02
		144	7.21E-02	4.43E-01	2.99E-01	4.13E-02
		168	1.10E-01	8.95E-01	7.52E-02	1.43E-02

ID effect

Insertion devices cause some effects on beam dynamics like betatron tune shifts, optical functions perturbation, emittance variation, multipole field effects, etc. The field of a wiggler can be modeled as:

$$B_{x} = 0 \qquad B_{y} = B_{w} \cos(k_{w}s) \cosh(k_{w}y) \qquad B_{s} = -B_{w} \sin(k_{w}s) \sinh(k_{w}y)$$

The equations of motion:

$$\begin{cases} \frac{d^2 x}{ds^2} = \frac{1}{\rho_w} \cosh(k_w y) \cos(k_w s), \\ \frac{d^2 y}{ds^2} + \frac{\sin^2(k_w s)}{\rho_w^2} \frac{\sinh(2k_w y)}{2k_w} = \frac{p_x}{\rho_w} \sinh(k_w y) \sin(k_w s), \end{cases}$$

average focusing strength: $\left\langle \frac{\sin^2(k_w s)}{\rho_w^2} \right\rangle =$ vertical tune shift: $\Delta v_y = \frac{\overline{\beta}_y L_w}{8\pi \rho^2}$

Beta beat in vertical plan can be evaluated

Tune-shift with gap for w20 at TLS

Vertical beta perturabtion due to Wiggler 20 in TLS (Kuo, et al **PAC95**)

Correction Algorithm

-0.03

- By the following linear 1. relations, construct the response matrix A of bare lattice.
- 2. Use SVD method to restore the perturbed optics back to the optics of the bare lattice as much as possible by minimizing $(A\Delta k + b)$.
- Where Δk is the tuning 3. strength of the quadrupoles, and b is the perturbed optics.
- One can choose arbitrary 4. positions to restore optics with different weighting.

SW60
0.4
60
8
3.5
0.45
17
13.39

100

120

Index of quadrupole

140

160

180

200

220

240

240

Beta Beating and phase beating correction

(a) Horizontal beta-beating with SW60

(c) Horizontal phase-beating with SW60

(d) Vertical phase-beating with SW60

potential function:

$$\Psi(x, y) = \int_{-\infty}^{\infty} \left(\left(\int_{-\infty}^{s} B_{x}(x, y, s_{1}) ds_{1} \right)^{2} + \left(\int_{-\infty}^{s} B_{y}(x, y, s_{1}) ds_{1} \right)^{2} \right) ds$$

kick map: $\begin{cases} M_x = -\frac{1}{2}\partial_x \Psi(x, y) \\ M_y = -\frac{1}{2}\partial_y \Psi(x, y) \end{cases}$

Emittance with IDs

 $\frac{I_{5w}}{I_{50}} \approx \begin{cases} \frac{8\rho_0}{3\pi f_h \rho_w} \frac{U_w}{U_0} = \frac{8B_w}{3\pi f_h B_0} \frac{U_w}{U_0}, \text{ planar undulator} \\ \frac{\rho_0}{f_h \rho_w} \frac{U_w}{U_0} = \frac{B_w}{f_h B_0} \frac{U_w}{U_0}, \text{ helical undulator} \end{cases}$ Emittance without ID $\varepsilon_{x0} = C_q \gamma^2 \frac{I_{50}}{I_{50} - I_{50}}$ Emittance with ID $\varepsilon_x = C_q \gamma^2 \frac{I_{50} + I_{5w}}{I_{20} - I_{40} + I_{2} - I_4}$ $I_{50} \approx f_h H_{ID} \oint \frac{1}{\rho^3} ds = f_h H_{ID} \frac{2\pi}{\rho^2},$ $\approx J_{h} \mu_{IDJ} \rho^{*}$ $f_{h} = \frac{\langle H_{dipole} \rangle}{H_{ID}}, \quad H = \gamma_{x} \eta_{x}^{2} + 2\alpha_{x} \eta_{x} \eta_{x}^{*} + \beta_{x} \eta_{x}^{'2}$ $I_{5w} = H_{ID} \int_{w} \frac{1}{|\rho|^{3}} ds \approx \begin{cases} 4H_{ID} L_{w} / (3\pi\rho_{w}^{3}), \text{ planar undulator} \\ H_{ID} L_{w} / \rho_{w}^{3}, \text{ helical undulator} \end{cases} \qquad \left| \frac{\varepsilon_{x}}{\varepsilon_{x0}} \approx \begin{cases} (1 + \frac{1}{\omega} U_{0}) \\ (1 + \sum_{w} \frac{H_{w}}{1} \frac{U_{w}}{U_{0}}) \\ (1 + \sum_{w} \frac{H_{w}}{1} \frac{U_{w}}{U_{0}}) \\ (1 + \sum_{w} \frac{U_{w}}{1} \frac{U_{w}}{U_{0}}) \end{cases} \right|, \text{ helical undulator}$

→ If B_w > (3πf_h/8)B₀ then emittance will increase for planar undulator
 → Installing IDs in the non-dispersive straights, where f_h is very large, emittance always decreases.

→ For a TME lattice, f_h=0.25, and for a tyical well-designed distributed dispersion lattice, f_h=0.5~0.8 The Sixth OCPA Accelerator School, 2010, Beijing, CCKuo- 97

Energy spread with IDs

 \rightarrow If B_w > (3 π /8)B₀ then energy spread will increase for planar undulator.

ID effects

Natural emittance and effective emittance as a function of number of SW60 (2 m, 3.5 T, 6 cm period length, 62.4 kW SR loss/each @400 mA)

Error sources, which cause the vertical emittanc blow-up:

Collective instabilities such as fast-ion instabilities, singlebunch broad-band instabilities, coupled-bunch instabilities, etc.

>Linear betatron coupling due to skew quadrupole errors from quadrupole rotation errors and vertical closed orbit distortion in sextupoles.

>Linear betatron coupling from solenoidal field.

Spurious vertical dispersion caused by
 vertical bend error from bending rotation errors and vertical closed orbit errors in the quadrupoles
 dispersion coupling due to skew quadrupole errors in the dispersion region which are from quadrupole rotation errors in the dispersion region and vertical closed orbit distortion in sextupoles in the dispersion region.

Spurious Vertical Dispersion

$$\varepsilon_{y} = \frac{c_{q}\gamma^{2}\langle I_{y}\rangle}{\rho} = \frac{c_{q}\gamma^{2}}{\rho} \langle [\eta_{y}^{2} + (\eta_{y}\alpha_{y} + \eta_{y}'\beta_{y})^{2}]/\beta_{y} \rangle_{dipole} \approx 2\frac{c_{q}\gamma^{2}}{\rho} \langle \eta_{y}^{2}/\beta_{y} \rangle_{dipole}$$

$$\begin{split} \left\langle \eta_{y}^{2} / \beta_{y} \right\rangle_{dipole} &= \frac{1}{8 \sin^{2} \pi \nu_{y}} \left(\sum_{i} \frac{\beta_{yi} L_{i}^{2}}{\rho^{2}} \Delta \vartheta_{i,dipole}^{2} + \sum_{i} \beta_{yi} k_{1i}^{2} L_{i}^{2} \Delta y_{cod,i,quad}^{2} \right. \\ &+ \sum_{i} \beta_{yi} k_{1i}^{2} \eta_{xi}^{2} L_{i}^{2} \Delta \vartheta_{i,quad}^{2} + \sum_{i} \beta_{yi} k_{2i}^{2} \eta_{xi}^{2} L_{i}^{2} \Delta y_{cod,i,sext}^{2} \right) F_{i} = \begin{cases} \frac{\Delta \vartheta_{i,dipole}}{\rho} \\ k_{1i} \Delta y_{cod,i,quad} \\ k_{1i} \eta_{xi} \Delta \vartheta_{i,quad} \\ k_{2i} \eta_{xi} \Delta y_{cod,i,sext} \end{cases} \\ &= \frac{1}{8 \sin^{2} \pi \nu_{y}} \sum_{i} \beta_{yi} F_{i}^{2} L_{i}^{2}, \end{split}$$

TPS:

$$\varepsilon_{y}(nm - rad) = 4.3 \times 10^{-3} \Delta \mathcal{G}_{dipole}^{2} + 3.98 \times 10^{-1} \Delta y_{cod, quad}^{2} + 6.3 \times 10^{-3} \Delta \mathcal{G}_{quad}^{2} + 1.4 \times 10^{-1} \Delta y_{cod, sext}^{2}$$

Betatron coupling

$$G_{1,-1,l}e^{i\chi} = \frac{1}{2\pi} \oint \sqrt{\beta_x \beta_y} k_s e^{i[\varphi_x - \varphi_y - (\nu_x - \nu_y - l)\theta]} ds$$
$$\left\langle G^2 \right\rangle = \frac{1}{(2\pi)^2} \left[\Delta \mathcal{G}_{quad}^2 \sum_i (2k_1 l)^2 \beta_{x,i} \beta_{y,i} + \Delta y_{cod,set,}^2 \sum_i (k_2 l)^2 \beta_{x,i} \beta_{y,i} \right]$$

$$G^{2} = 7.71 \times 10^{-4} \Delta \mathcal{G}_{quad}^{2} + 3.55 \times 10^{-3} \Delta y_{cod,sex}^{2}$$

$$\kappa = \frac{G^2}{G^2 + 2\Delta^2}$$

Betatron coupling from quadrupoles and sextupoles

	Δ	G	K
Quadrupole Rotation: 0.1 mrad (rms)	9.94E-02	1.39E-03	3.9E-02
Vertical Sextupole Position: (rms)	9.94E-02	2.98E-03	1.79E-01

Cross Orbit Response Matrix

Vertical orbit and dispersion response to errors

$$y_{c}(s) = \frac{\sqrt{\beta_{y}(s)}}{2\sin \pi v_{y}} \int_{s}^{s+c} \sqrt{\beta_{y}(z)} \cos(\psi_{y}(s) - \psi_{y}(z) + \pi v_{y})G(z)dz,$$
$$\eta_{y}(s) = \frac{\sqrt{\beta_{y}(s)}}{2\sin \pi v_{y}} \int_{s}^{s+c} \sqrt{\beta_{y}(z)} \cos(\psi_{y}(s) - \psi_{y}(z) + \pi v_{y})F(z)dz,$$

$$G(s) = \tilde{K}_{1} x_{c} + K_{2} x_{c} y_{m} - G_{y}$$
$$\tilde{F}(s) = -G_{y} - K_{1} y_{c} - \tilde{K}_{1} \eta_{x} + K_{2} y_{c} \eta_{x}$$

Response Matrix

skew quads and sextupoles only

$$(\Delta y_{c})_{i} = \sum_{s} (K_{2}ly_{m})_{s} R_{is}^{(V)} \cdot R_{sj}^{(H)} \cdot \theta_{Hj} + \sum_{k} (\tilde{K}_{1}l)_{k} R_{ik}^{(V)} \cdot R_{kj}^{(H)} \cdot \theta_{Hj},$$

$$(\Delta \eta_{y})_{i} = \sum_{s} (K_{2}ly_{m})_{s} R_{is}^{(V)} \eta_{x} - \sum_{k} (\tilde{K}_{1}l)_{k} R_{ik}^{(V)} \eta_{x},$$

$$\mathbf{M}\mathbf{K} = \mathbf{V}$$

Dimension: M: 16296 X 24 or 48 K: 24 or 48 skew quads V: 16296 (96*168+168) 168 Monitors, 4 correctors per section, 96 in total. Using SVD method to get K as wanted correction.

CORRECTION OF VERTICAL DISPERSION AND BETATRON COUPLING

Lattice: 79H2

- Using cross-plane response matrix and SVD method to correct both betatron coupling and vertical dispersion with a set of skew quadrupoles.
- With 48 skew quads, <1% emittance ratio can be achieved, and the maximum strength is < 5.4x10⁻³ m⁻¹

CORRECTION OF VERTICAL DISPERSION AND BETATRON COUPLING

Lattice: 79H2

Increasing Coupling ratio Capability

Eigenvalues of 24 Skew Quads.

Eigenvalues of 48 Skew Quads.

Experimental results (TLS)

 $\kappa = \frac{G^2}{G^2 + 2\Lambda^2}$

C.C. Kuo, et. al EPAC2002
TLS results

C.C. Kuo, et. al EPAC2002

Storage Ring injection scheme

 β_{xi} at injection point 2.5 m:

$$\beta_{x_i}^{2} + \frac{n\sigma_{x_0} + T}{2\sqrt{\varepsilon_{x_i}}}\beta_{x_i}^{3/2} = \frac{\beta_{x_0}^{2}}{2}$$

Beam Parameter	Storage Ring	Transfer Line
Emittance(3 GeV) (nm-rad)	1.912*4*4=30.6	31.3*2=62.6
Horizontal beta value at injection point (m)	10.211	2.503
Horizontal dispersion at injection point (m)	0.0	0.0
Energy spread	8.8E-4	9.5E-4
Horizontal beam size (mm)	0.559	0.396

<u>Kicker and Septum Magnet Parameters</u> <u>for SR injection</u>

Elliptical chamber size, Limited by bellows Radii: 34mm (H), 15 mm (V)

Off-momentum aperture, 79J2

$$\begin{aligned} x_{k} &= \sqrt{A_{x,i}\beta_{x,k}} + \eta_{x,k}\delta \\ H_{x,i} &= \gamma_{x,i}(\eta_{x,i}\delta)^{2} + 2\alpha_{x,i}(\eta_{x,i}\delta)(\eta_{x,i}\delta) + \beta_{x,i}(\eta_{x,i}\delta)^{2} \\ y_{k} &= \sqrt{A_{y,i}\beta_{y,k}} + \eta_{y,k}\delta \\ H_{y,i} &= \gamma_{y,i}(\eta_{y,i}\delta)^{2} + 2\alpha_{y,i}(\eta_{y,i}\delta)(\eta_{y,i}\delta) + \beta_{y,i}(\eta_{y,i}\delta)^{2} \\ A_{x,i} &= H_{x,i}\delta^{2} + \kappa H_{y,i}\delta^{2} \\ A_{y,i} &= H_{y,i}\delta^{2} + \kappa H_{x,i}\delta^{2} \\ \text{Let } H_{y,i} &= 0, \kappa = 1\%, \delta = +/-3\% \end{aligned}$$

79H2, +-4%

Injection aperture

$$X_{injection} = (A_{x,\max}^{2} \times \frac{\beta_{x0}}{\beta_{x,\max}} + (D_{x}\delta)^{2})^{\frac{1}{2}}$$

$$A_{x,\max} = 28.57mm, \delta = \pm 1\%$$

APXINJ

Table name = TWISS The Sixth OCPA Accelerator School, 2010, Beijing. CCKuo- 112

Energy acceptance and 6D tracking with chamber size

The Sixth OCPA Accelerator School, 2010, Beijing. CCKuo-113

Touschek Lifetime with 5 IU22

Bruck formula

$$\frac{1}{\tau_{T_{\frac{1}{2}}}} = \left(\frac{r_e^2 cN}{8\pi \gamma^3 \sigma_l}\right) \cdot \frac{1}{L} \int_{0}^{L} \frac{C\left[\left(\frac{\varepsilon_{acc}(s)}{\gamma \sigma_x(s)}\right)^2\right]}{\sigma_x(s)\sigma_z(s)\sigma_x(s)\varepsilon_{acc}^2(s)} ds$$

$$C(\varsigma) = -1.5e^{-\varsigma} + \frac{\varsigma}{2}\int_{\varsigma}^{\infty} \frac{\ln u}{u}e^{-u}du + 0.5(3\varsigma - \varsigma\ln\varsigma + 2)\int_{\varsigma}^{\infty} \frac{e^{-u}}{u}du$$

Tracy-II 6-D tracking 5 IU22 gap 7 mm Multipole field errors 1% coupling Chromaticity=2 Kick maps optics corrected

Radiation integral and electron beam properties

Radiation integral

$$I_{1} = \oint \frac{\eta_{x}}{\rho} ds$$

$$I_{2} = \oint \frac{1}{\rho^{2}} ds$$

$$I_{3} = \oint \frac{1}{|\rho|^{3}} ds$$

$$I_{4} = \oint \frac{\eta_{x}}{\rho} (\frac{1}{\rho^{2}} + 2K) ds$$

$$I_{5} = \oint \frac{H}{|\rho|^{3}} ds,$$
where $H = \frac{1}{\beta_{x}} (\eta_{x}^{2} + (\alpha_{x}\eta_{x} + \beta_{x})) ds$

(1) Mom. comp. $\alpha_c = I_1 / 2\pi R$

(2) Emittance $\varepsilon_x = C_q \gamma^2 I_5 / (I_2 - I_4)$ $C_q = (55/32\sqrt{3})\hbar / mc = 3.83 \times 10^{-13}$

(3) Energy spread $(\sigma_E / E)^2 = C_q \gamma^2 I_3 / (2I_2 + I_4)$

(4)Energy loss per turn $U_0 \approx C_{\gamma} E^4 I_2 / 2\pi$ $C_{\gamma} = (4\pi/3)r_0 / (mc^2)^3 = 8.85 \times 10^{-5} m / (GeV)^3$

$$(5) J_{x} = 1 - I_{4} / I_{2}, J_{E} = 2 + I_{4} / I_{2}, D = I_{4} / I_{2}$$